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INTRODUCTION

The presence of speckle in imagery produced with coherent illumi-

nation (e.g., synthetic aperture radar) reduces the detectability of

objects in the image-t-19]. It also reduces the effectiveness of

some computer algorithms (e.g., edge detection) designed for auto-

matic image analysis.

Thus it is desirable to reduce speckle in synthetic aperture

radar (SAR) images both to assist radar image interpreters and to

preprocess images for automatic recognition algorithms on computers.

The goal is to smooth out the speckle but at the same time preserve

features of interest like edges, strong returns, etc.
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SUMMARY

2.1 THE GEOMETRIC FILTER

A non-linear filter was developed to reduce speckle in SAR

imagery while at the same time preserving spatial information. This

filter is fundamentally different from any of the speckle reduction

techniques that have appeared in the literature [10-33]. It is based

on geometric concepts ([34] - Appendix A), and is referred to as tne

geometric filter.

The original geometric filter was designed for 8-bit imagery.

It is an iterative algorithm and generally about four to ten itera-

tions is optimal although just two or three iterations will reduce

the speckle significantly.

This 8-bit filter was originally implemented on a De Anza IP5500

digital video processor using a VAX 11/980 as a host system. Running

time was about 14 s per iteration for 512 x 512 images. It was later

implemented on a 4-stage configuration of the CYTO-HSS High Speed

Cytocomputer System (recently developed at ERIM - see [46]) and run-

ning time was reduced to 0.2 s per iteration for images of the same

size. This hardware can also be configured with 32 processor stages

which would further reduce the execution time of 0.025 s for such

images.

The geometric filter was compared favorably ([34] - Appendix A)

with the 3 x 3 median filter [21-29]. It was also compared favorably

([35, 36] - Appendicies B, C) with look-averaging [20, 32].

Exploration of filters in a class of non-linear filters failed
to produce any that performed as well as the geometric filter.

2.2 THE GENERALIZED GEOMETRIC FILTER

One iteration of the geometric filter involves 32 basic opera-

tions, 16 of which increase pixel values and the otner 16 decrease

r2
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pixel values (see Appendix A). In the original version discuS.'ea

above, a pixel value can be increased or decreased by at most one by
each of these basic operations. This original version was developed

for use on 8-bit SAR imagery.

A generalization of the geometric filter was developed for use

on 16-bit SAR imagery. Because of the greater dynamic range, many

iterations of the original version would be required to reduce the

speckle significantly. The generalized version has an integer-valued

control parameter n which allows for adjustment to the dynamic range

of the image. Each of the 32 basic operations referred to above can
increase or decrease a pixel value by at most n. With ni = 1, the

operation of the generalized version is identical to that of the

original version. A program that computes one iteration of the gen-

eralized geometric filter is presented in Appendix 0.

Experiments were performed to determine optimal settings for the

control parameter. The maximum amount a pixel value can be changed

in a single iteration is 16 n. For example, if there is a pixel in

the image whose value is more than 16 n greater than tne value of

any other pixel in the image then its value will be reduced by 16 n.

Thicker spikes will be reduced more slowly.

The speckle index (see Appendix A) was computed before and after

running the filter with various settings of the control parameter.
The extent to which the spatial information was preserved was judged

subjectively.

By this somewhat ad hoc procedure it was found that the best
results were achieved by halving the value of thie control parameter

on each successive iteration. It was also found that the maximum
change in pixels values (= 16 n) for the first iteration should be

about one quarter of the maximum pixel value in the image. This

leads to the following method for setting the control parameter. On

the first iteration the control parameter is set equal to n 1 wnere

n1 is the smallest power of two which is greater than or equal to

3
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maximum pixel value in the image divided by 64. The control param-

eter is then halved on each successive iteration. On the last itera-

tion it has the value 1. This scheme results in I + log 2 n,

iterations. If a 16-bit image is saturated then its maximum pixel

value is 216 _ 1 which results in 11 iterations.

Table 2-1 shows the speckle indices and maximum pixel values for

the sequence of images obtained using this scheme on a 16-bit 512 x

512 X-band SAR magnitude image of an area in North Carolina near

Rayleigh-Durham. (This imagery was made under USGS Contract No.

14-08-0001-21748). Table 2-1 also shows tne reductions in tne maxi-

mum pixel value for each iteration and the maximum possible reauc-

tions. The maximum pixel value in the original image is 1946 and

1946/64 = 30.4. Therefore the control parameter settings are 32,

16, 8, 4, 2 and 1 for the six iterations performed. (See Figures

2-1, 2-2 and 2-3.)

2.3 CONTRAST ENHANCEMENT ALGORITHM

Most digital display devices display 8-bit images, which is rea-

sonable since the human vision system can perceive only about 8 bits'

worth of grey-levels. In order to display a 16-bit image it must

first be scaled down to 8-bits. The simplest method is to use a

linear scaling wnich maps the maximum pixel value into 255 and the

minimum into 0. However, if the image contains large sections with

a relatively small dynamic range plus a few very bright points, this

method will result in using very few quantization levels in large

sections of the scaled-down image just to accommodate the few bright

points. The generalized geometric filter produces images of this

sort. By reducing the speckle it reduces the dynamic range in large

sections of the image. On the other hand, it preserves small strong

returns. Although the pixel values of these returns are reduced,

they can still be fairly large.

4S.;.-- . .. .
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TABLE 2-1
EFFECTS OF THE GENERALIZED GEOMETRIC FILTER

Control Maximum Maximum
Parameter Speckle Pixel Reduction Possible

Iteration n Index Value in Max Reduction

0 N.A. .475 1946 0 0

1 32 .068 1519 427 512

2 16 .039 1341 178 256

3 8 .029 1250 91 128

4 4 .024 1210 40 64

5 2 .0215 1190 20 32

6 1 .0202 1179 11 16

Note: ThWef"titerationl is the original image.
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FIGURE 2-1 . ORIGINAL IMAGE WITH SIMPLE GLOBAL LINEAR SCALING TO 8 BITS.
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FIGURE 2-2. -FE"L REDUCED IMAGE WITH SPIPIE GLOBAL LINEAR SCALING TO 8 BITS.
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*4 FIGURE 2-3. SPECKLE REDUCED IMAGE WITH CONTRAST ENHANCEMENT SCALING TO 8 BITS.
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The contrast enhancement algorithm is basically a compromise be-

tween the global linear scaling defined above and an adaptive local

linear scaling which uses local maxima and minima. If the adaptive

local linear scaling is used by itself, all global contrast is lost

and this global contrast can contain useful information. For exam-

ple, a wooded area will be brighter than a pasture in the globally

scaled image.

Let f(m,n) represent the filtered image and let G be its global

maximum and let H be its global minimum. Let gl(m,n) be the local

maximum of f over a N x N square centered at (m,n), where N is an

odd integer. (If the pixel (m,n) is close enough to an edge so that

this square is not completely contained in the image, the local max-

imum is taken over the part of the square which is in the image.)

Let h1(m,n) be similarly defined as the local minimum of the image

f. In order to avoid the creation of artificial edges in the final

image, the functions g, and h, are smoothed by convolving them

with the function

Cmsinc (s - n for Iml < N

0 otherwise,

Z p(m, n) = .(2)
Iml < N
Inl <N

We define g(m,n) as a convex combination of the smoothed local maxi-

mum and the global maximum G;

g(m,n) E . g1 (m + j, n + k)b(j, k) + (1 - B)G, (3)

Jii < N
Ik < N

9



L RIM
where B is an input parameter, 0 < a < 1. (Appropriate modifications

are made near edges.) Another function h(m, n) is defined similarly

as a convex combination (same B) of the smoothed local minimum and

the global minimum H.

Finally, the contrast enhanced image is defined as

, m, n) - h(m, n) . 255 if g(m, n) J h(m, n)

fl(m, n) ,

f(m, n)- H _ 255 otherwise.
a - H

The image in Figure 2-1 was obtained by simple global scaling

(B = 0) of the original 16-bit image before running the generalized

geometric filter on it. A 16-bit filter image was produced by run-
ning six iterations of the filter with n = 32, 16, 8, 4, 2 and 1,

respectively. Figure 2-2 is the 8-bit image obtained by simple

global linear scaling (B = 0) of the filtered image. Figure 2-3 is

the 8-bit image obtained by running the contrast enhancement algo-

rithm on the filter-d image with N = 3 and B = .95.

J.

w 'W * " w"". "".. % ,"-. % % " i,. % %, . % , .-..-. r% ,r - " " " "w"10W



M'RIM
3

PUBLICATIONS

The following papers were published during the performance of

this contract.

1. T.R. Crimmins, "Geometric Filter for Speckle Reduction," Appl.
Opt. 24(10), 1438-1443 (1985).

2. T.R. Crimmins, "Geometric Filter for Reducing Speckle," Proc.
SPIE International Conf. on Speckle, 213-222 (August 1985).

3. T.R. Crimmins, "Geometric Filter for Reducing Speckle," Opt.
Eng. 25(5), 651-654 (1986).

J

L1



-ERIM
4

SCIENTIFIC PERSONNEL

The following scientific personnel participated in this project:

T.R. Crimmins

B.K. Eby

W.F. Pont

12



-RM

5
REFERENCES

1. A. Kozma, "Detectability of Objects in Speckle," Technical
Report RR-CR-80-1, Research Directorate, U.S. Army Missile
Laboratory, U.S. Army Missile Command, Redstone Arsenal, AL,
October 1979.

2. C.R. Christensen, B.D. Guenther, J.S. Bennett, A. Jain, N.
George, and A. Kozma, "Object Detectability in Speckle Noise,"
Internat. Conf. on Lasers, Orlando, FL, December 1978.

3. N. George, C.R. Christensen, J.S. Bennett, and B.D. Guenther,
"Speckle Noise in Displays," J. Opt. Soc. Am., Vol. 66, p. 1282,
1976.

4. B.D. Guenther, N. George, C.R. Christensen, and J.S. Bennett,
"Speckle Noise and Object Contrast," Photo. Sci. ana Eng., Vol.
21, p. 192, 1977.

5. C.R. Christensen, N. George, B.D. Guenther, and J.S. Bennett,
"Noise in Coherent Optical Systems: Minimum Detectable Object
Contrast and Speckle Smoothing," Technical Report TR-RR-77-2,
U.S. Army Missile Command, Redstone Arsenal, 1976.

6. V.N. Korwar and J.R. Pierce, "Detection of Gratings and Small
Features in Speckle Imagery," Applied Optics, Vol. 20, No. 2,
January 1981.

7. A. Kozma and C.R. Christensen, "Effects of Speckle on Resolu-
tion," J. Opt. Soc. Am., Vol. 66, No. 11, November 1976.

8. C.R. Christensen and A. Kozma, "The Effects of Speckle on Reso-
lution of High Contrast and Continuous Tone Objects," Technical
Report RR-77-2, Physical Sciences Directorate, U.S. Army Missile
Research, Development and Engineering Laboratory, U.S. Army
Missile Command, Redstone Arsenal, AL, December 1976.

9. H.H. Arsneault and G.V. April, "Information Content of Images
Degraded by Speckle Noise," Opt. Eng. Vol. 25, No. 5, pp. 662-
666, 1986.

10. V.S. Frost, J.A. Stiles, K.S. Shannugan, and J.C. Holtzman, "A
Model for Radar Images and Its Application to Adaptive Digital
Filtering of Multiplicative Noise," IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. PAMI-4, 7No.2, March
1982.

11. A.K. Jain and C.R. Christensen, "Digital Processing of Images
in Speckle Noise," SPIE, Vol. 243, Applications of Speckle
Phenomena, 1980.

13



12. J.S. Lee, "Digital Image Enhancement and Noise Filtering by the
Use of Local Statistics," IEEE Trans. Pattern Anal. Mach.
Intelligence, PAMI-2, No. 2, 1980.

13. J.S. Lee, "Refined Filtering of Image Noise Using Local Statis-
tics, Computer Graphics and Processing, Vol. 15, 1981.

14. J.S. Lee, "Speckle Analysis and Smoothing of Synthetic Aperture
Radar Images," Computer Graphics and Image Processing, Vol 17,
1981.

15. T.S. McKechnie, "Speckle Reduction," in Laser Speckle and Re-
lated Phenomena, ed. by J.C. Dainty, Vol. 9 of Topics in Applied
Physics, p. 123, Springer-Verlag, Berlin, 1975.

16. J.S. Lee, "A Simple Smoothing Algorithm for Synthetic Aperture
Radar Images," IEEE Trans. Syst. Man., Cybern., Vol. 13, No. 1,
January/February 1983.

17. J.S. Lim, "Image Restoration by Short Space Spectral Subtrac-
tion," IEEE Trans. Acoust., Speech, Sinal Processing, Vol 26,
p. 157, April 178.

18. J.S. Lim and H. Nawab, "Techniques for Speckle Noise Removal,"
SPIE, Vol. 243, Applications of Speckle Phenomena, 1980.

19. E.G. Rawson, A.B. Nafarrate, R.E. Norton, and J.W. Goodman,
"Speckle-Free Rear Projection Screen Using Two Close Screens in
Slow Relative Motion," J. Opt. Soc. Am., Vol. 66, No. 11,
p. 1290, 1976.

20. J.S. Zelenka, "Comparison of Continuous and Discrete Mixed-
Integrator Processors," J. Opt. Soc. Am., Vol. 66, No. 11,
p. 1295, 1976.

21. J.W. Tukey, "Nonlinear (Unsuperposable) Methods for Smoothing
Data," in Cong. Rec., EASCON, p. 673, 1974.

22. J.W. Tukey, Exploratory Data Analysis, Reading, MA, Addison-
Wesley, 1977.

23. T.S. Huang, G.J. Yang, and G.Y. Yang, "A Fast Two-Dimensional
Medium Filtering Algorithm," IEEE Trans. Acoust., Speech, Signal
Processing, Vol. ASSP-27, pp. 13-i8, February 19/9.

24. T.S. Huang and G.J. Yang, "Mexican Filters and Their Applica-
tions to Image Processing," School of Electrical Engineering,
Purdue University, West Lafayette, IN, TR. EE 80-1, January
1980.

25. T.S. Huang, "Two-Dimensional Signal Processing -- II," in Tois
in Applied Physics, Vol. 43, S.G. Tyan, Berlin, Springer-VeTa,
1981.

14

Ir f.v



S--RIM

26. N.C. Gallagher, Jr. and G.L. Wise, "A Theoretical Analysis of
the Properties of Median Filters," IEEE Trans. Acoust., Speech,
Signal Processing, Vol. ASSP-29, No. 6 , pp. i136-T -ecemre
1981.

27. T.A. Nodes and N.C. Gallagher, Jr., "Median Filters: Some Mod-
ifications and Their Properties," IEEE Trans. Acoust., Speech,
Signal Processing, Vol. ASSP-30, No. 5, October i-82.

28. G.R. Arce and N.C. Gallagher, Jr., "State Description for the
Root-Signal Set of Median Filters," IEEE Trans. Acoust., Speech
Signal Processing, Vol. ASP-30, No. 6, December ME~

29. N.C. Gallagher, D.W. Sweeney, and C.R. Christensen, "Median
Filtering of Speckle Noise," Technical Report RR-82-6, Research
Directorate, U.S. Army Missile Laboratory, U.S. Army Missile
Command, Redstone Arsenal, AL, 8 February 1982.

30. C.R. Christensen, A.K. Jain, and B.D. Guenther, Digital Filter-
ing of Speckle Noise," J. Opt. soc. Am., Vol. 8 No. 1,

31. B.D. Guenther, C.R. Christensen, and Amil Jain, "Digital Proces-
sing of Speckle Images," Proc. IEEE on Pattern Recognition and
Image Processinq, Chicago,[IL, May 1978.

32. L.J. Porcello, N.G. Massey, R.B. Innes, and J.M. Marks, "Speckle
Reduction in Synthetic-Aperture Radars," J. Opt. Soc. Am., Vol.
66, No. 11, p. 1305, 1976.

33. J.S. Lee, "Speckle Suppression and Analysis for Synthetic Aper-
ture Radar Images," Opt. Eng., Vol. 25, No. 5, pp. 636-643,
1986.

34. T.R. Crimmins, "Geometric Filter for Speckle Reduction," Appl.
Opt., Vol. 24, No. 10, pp. 1438-1443, 1985.

35. T.R. Crimmins, "Geometric Filter for Reducting Speckle," Proc.
SPIE International Conf. on Speckle, pp. 213-222, August 1985.

36. T.R. Crimmins, "Geometric Filter for Reducing Speckle," Opt.
En., Vol. 25, No. 5, pp. 651-654, 1986.

37. J.W. Goodman, "Statistical Properties of Laser Speckle Pat-
terns," in Laser Speckle and Related Phenomena, ed. by J.C.
Dainty, Vol. of Topics--inAPplied L-Tcs, pp. 9-75, Springer-
Verlag, Berlin, 1975.

38. J.C. Dainty, "Coherent Addition of a Uniform Beam to a Speckle
Pattern," J. Opt. Soc. Am., Vol. 62, p. 595, 1972.

39. S.O. Rice, "Mathematical Analysis of Random Noise," in Selected
Papers on Noise and Stochastic Processes, ed. by N. Wax, Dover
Press, NY, 1954.

15



-E'RIM

40. R.W. Larson, A. Dias, C. Liskow, and R. Majewski, "Digital Cal-
ibration Method for Synthetic Aperture Radar Systems," submitted
to IEEE Trans. on Remote Sensing.

41. R.W. Larson, D.T. Politis, and J.L. Walker, "SAR Calibration:
A Technology Review," Proceedings of the ESA SAR Calibration
Workshop, Albach, Austria, December 1982.

42. "Amplitude Calibration Techniques Applied to the Environmental
Research Institute of Michigan's Airborne Synthetic Aperture
Radar System," ERIM, Radar and Optics Division, Technical Report
AFAL-TR-74-239, Ann Arbor, MI, November 1974.

43. R.W. Larson and W. Carrara, "Radar Clutter Data Collection,
Calibration, Digitization, and Analysis," ERIM, Radar and Optics
Division, Technical Report AFAL-TR-79-1232, Ann Arbor, MI,
December 1979.

44. R.W. Larson, R. Hamilton, F. Smith, and J. Haynes, "Calibration
of Synthetic Apeture Radar," Proc. IGRSS, Washington, DC, June
1981.

45. D.T. Kuan, A.A. Sawchuk, and T.C. Strand, "Adaptive Restoration
of Images with Speckle," SPIE, Vol. 259, Applications of Digital
Image Processing IV, 1982.-

46. R.M. Lougheed, "A High Speed Recirculating Neighborhood Proc-
essing Architecture," SPIE, Vol. 534, Architectures and Algo-
rithms for Digital Image rocessing II, 1985.

16



RIM

APPENDIX A

"GEOMETRIC FILTER FOR SPECKLE REDUCTION"

T. R. Crirmnins

Published in Applied Optics
Vol. 24, No. 10, 1438-1443 (15 May 1985).

r,



-. . ..- -----------------------

Reprinted from Applied Optics, Vol. 24. page 1438, May 15, 1985
Copyright @ 1985 by the Optical Society of America and reprinted by permission of the copyright owner.

Geometric filter for speckle reduction
"I,

Thomas R. Crimmins

An algorithm is described which reduces speckle noise in images. It is a nonlinear algorithm based on geo-
metric concepts. Tests were performed on synthetic aperture radar images which show that it compares fa-
vorably with a 3 x 3 median filter.

I. Introduction and Results teresting to note that this means that this image, and

It is desirable to reduce speckle noise in synthetic hence the original image, have no median roots. This

aperture radar images both to assist radar image in- contrasts with the 1-D case in which median roots al-

terpreters and to preprocess images for automatic rec- ways exist.6 ) The 3 X 3 median filter replaces each
ognition algorithms on computers. The goal is to pixel value with the median of the nine pixel values in

smooth the speckle but at the same time preserve fea- its 3 X 3 neighborhood window. Figures 3(a). (b). and

tures of interest such as edges, strong returns, etc. (c) are shaded and shadowed versions of Figs. 2(a). (c).

A nonlinear algorithm based on geometric concepts and (d), respectively, considered as 2-D surfaces in 3-D

was developed to accomplish this. It is an iterative al- space.

gorithm and usually about ten iterations seems to be Because speckle'noise is multiplicative, the ratio of
optimal although just two or three iterations will reduce its deviation to its mean seems to be a reasonable mea-
the speckle significantly (see Table I). It was pro- sure of the amount of speckle noise present Isee Ref. 9.
grammed on a DeAnza IP5000 digital video processor p. 25).
using a VAX 11/780 as a host system. Running time Let p(m,n),1 5 m,n < N, be the pixel values. For 2
was 14 sec/iteration. < m,n < N - 1, the local deviation is defined as

Figure 1 is a synthetic aperture radar image of Willow acm,n) = maxpi m + i.n + j) - min pim + i.n + j Il
Run Airport in southeastern Michigan. It is an X-band
strip map image which was digitally processed on the - < i i- <i
ERIM digital processor. The polarization of both -5 _5< 1 -I <: -< 1
transmitter and receiver was horizontal. The resolu- (This, of course, is not the true deviation, but it is easy
tion. measured as the half-power width of the impulse to compute and we believe it should be good enough for
response function, is 6 m. Figure 2(a) is a subimage of our present purpose.) The local mean is defined as
Fig. 1. The pixel spacing in Fig. 2(a) is 3 m and the 1 _

image is 512 X 512 pixels. olmn)-- - pni+i.n+n 21
Figure 2(b) shows the result of four iterations of the 9",.-I

geometric filter, and Fig. 2(c) shows the result of ten it- Finally, the speckle index is defined as
erations. For comparison, Fig. 2(d) shows the result of i I cim.n,

applying the 3 X 3 median filter' -8 until this image was IN - 212 w,-. um.n-

obtained which is of period 2 under the median filter. Table I gives the speckle index for the original image
That is. one application of the median filter to this for various numbers of iterations of the geometric filter
image will change it (very slightly) but it is invariant and for the median root. Of course the goal here is to
under two applications of the median filter. (It is in- reduce the speckle index as much as possible while still

preserving the spatial information in the image. The
images in Figs. 2 and 3 indicate how well the spatial
information was preserved. Thus the speckle index
must be considered together with the corresponding

The author is with Environmental Research Institute of Michigan. images in order to determine how well a given filer
Radar Division. P.O. Box 8618. Ann Arbor. Michigan 48107. performs.

Received 23 January 1985. The geometric filter utilizes a technique which has
0003-6935/85/1014:38-06$02.00/0. a history starting with a problem which has not hing to
c 1985 Optical Society of America. do with speckle reduction. The original problem was

1438 APPLIED OPTICS / Vol. 24. No. 10 / 15 May 1985
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Table 1. Speckle Indices

Speckle
Image index

Original image 1.400
Four iterations of geometric filter 0.3so
Ten iterations of geometric filter o 182
Period 2 median root o.333

(a) (b)

.!

(c) (d)

Fig. 2. (a Original image. ibi Four iterations ,f geometrit niter

.c, Ten iterations ot geometric filter. 1d Period 2 median r, ,I
original image.

4.Fig. 1. Radar image of Willow Run Airport. The boxed section . .

appears in Fig. 2a).

to generate approximations of the convex hulls of .L

maximal connected subsets of the foreground of a bi- - .":'z':" narvimage. 1A binary image is an image whose pixels . -'"f

have only the values 0 and 1. The foreground is the set (a) (b)
of pixels with value i.) The motivation for this was , . -

enhancement of medical imagery. tip

II. The 8-Hull Algorithm ' /

The convex hull of a set is the intersection of all the ,-,
half-planes containing it. An approximation to this,
called the 8-hull. is defined as the intersection of only -

those half-planes which contain the set and whose edges .. l.
are either horizontal or vertical or lie in either of the 4.50
diagonal directions. The 8-hull of a set has, at most,
eight sides. (c)

P. Lambeck wrote an iterative algorithm (unpub- Fig. :. tal Shaded and shadowed version of ,riginal mAe *h,

lishedl which generates the 8-hull of a set. It works as Shaded and shadowed version of ten iterat is ol ge,,metrit fliet r ,,
" fllows At each step of the iteration, the value of a Shaded and shadowed version of period 2 median r-i ,i riLnim

pixel is changed from a I) to a I if its neighboring pixels image.
have ones arranged in any one of the configurations
.hown in Fig. 4. The blank squares can be either zeros
or ones. If enough iterations of this step are performed. III. Complementary Hulling Algorithm
e% entuallv the S-hull of the given set will be generated Next. J. Gleason developed an iteratixc i,',,rilhim

,e- 11iand it will be invariant under further iterations. An I unpublished) for smoothing the ragged edies ,il i)inar\
" xanoplef the S-hull of a set being formed is shown in images ofvehicles obtained by slicing gray.le i r,id,ir

.% Fiz. .3. The black squares represent oines and the white images. We will refer to this algorithm as tht c'mph-
-qiiares represent zeros. mentary hulling algorithm. One step oI the Iteration

15 May 1985 / Vol 24. No 10 APPLIED OPTCS '4,1,
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(o)

(b)

Fig. 4. Patterns used by the 8-hull algorithm.

" (a) (b)

Fig. 6. Allowable 900 turns in the boundary. These are except ions
' to the rule.

Fig. 5. *a) Original set. ib) One iteration of 8-hull algorithm. (C) 'i .. ::

Two iterations. id) Three iterations. This is invariant under further i !{! - !:.

iterations. " :: :: .-:

consists of the following. First, one step of the 8-hull
algorithm described above is applied to the set and then .....
one step of the 8-hull algorithm is applied to its corn- (a) (b)
plement. In other words, one step of the 8-hull algo- ........ : ...........
rithm is applied, then zeros and ones are interchanged,

then another step of the 8-hull algorithm is applied, and .: _....

finally, zeros and ones are interchanged again. This has : ==

the eff'ect ot gradually reducing the maximum curvature =:==== )..U ...
of the boundary of the set. (Curvature is the inverse of i :l "..:al

the radius of curvature.) More precisely, with a few--
exceptions. the boundary of a set invariant under this i .. ...........

algorithm can turn a maximum of 450 at any vertex. (c) (d)
The only known exceptions to this rule are the boundary
segments shown in Fig. 6 and their 900 rotations. :: i::!

Figure 7 shows a set at various stages of the iteration ..

process. rhe ninth iteration is invariant under further:::iiil.
iterations. Figure 8 shows the effect of this algorithm ):!i'.
on a set with a tower three pixels wide protruding from::::the top. I one imagines going up the left side of this
tower and then down the right side, a sharp U-turn must

be made at the top. This U-turn has too high a curva- I.)
ture to he permissible. Hence, the algorithm reduces Fig. 7. (aJ Original set. hi One iteration ,it ('impl!-meii;ir hulhini

it until the curvature is sufficiently small. A tower algorithm. ci Two iterations. di Three Itratintv 'el Nin, h*r.
seven pixels wide is shown in Fig. 9. Here the U-turn atons. This is intarnt under Trth re txptn i

1440 APPLIED OPTICS / Vol. 24, NO. 10 / 15 May 1985
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3 ft IV. Geometric Filter
, ..... A. How It Works

_ ...... The geometric filter uses this complementary hulling
... technique in the following way. First, picture the

gray-level (pixel values between 0 and 255 inclusive)
radar image lying horizontally with its sides running in

(o) (b) the north-south fN-S) direction and its top and bottom
running in the east-west (E-W) direction. We now

--=--- ....... construct a gray-level surface above the image such that
............. its height above any pixel is proportional to the value

.: .' .of that pixel. Next, this surface is sliced by all vertical
... .... planes which contain a line of pixels running in the E-W

direction. A discrete grid is defined on each of these
vertical planes composed of vertical lines which pass

-- ---- through pixels in the image and horizontal lines at
() (d) heights representing the integers between 0 and 255

inclusive. The points in this vertical grid will be re-
- -- ferred to as vertical pixels. Then the intersection of any

one of the vertical planes with the gray-level surface is
....... a curve composed of vertical pixels in the vertical grid

[Fig. 10(a)]. Now consider the umbra of this curve.
. "The umbra consists of all vertical pixels in the vertical

grid on or below the curve [Fig. 10(b)]. If we assign the
% "._-_______value 1 to all vertical pixels in the umbra and the value

(.) 0 to all other vertical pixels in the vertical grid, the
Fig.8. ia)Originalset. 1b)Oneiterationofcomplementaryhulling vertical grid can be considered as a binary image.
algorithm. (c) Two iterations. (d) Fourteen iterations. (el Fifteen (Note: It is not necessary for the algorithm to actually

iterations. This is invariant under further iterations, construct this binary image. We construct it here only
for pedagogic purposes.) Now one iterative step of the
complementary hulling algorithm is applied to the

. ...------- - umbra, which is the foreground of the vertical binary
image just constructed. Recall that the first half Ifan
iterative step of the complementary hulling algorit hi

are only concerned with the line forming the top

boundary of the umbra, only four of the eight configu-
rations shown in Fig. 4 need be used. These four are

S--- - ---.. . .-- shown in Fig. 4(a). Similarly. in the second half of an
(a) (b) iterative step of the complementary hulling algorithm.

------- .when one iterative step of the 8-hull algorithm is applied...........: ....... to the complement [Fig. 10(c)], only the line forming the
bottom boundary of the complement is of interest and

. .hence only the four configurations shown in Fig. 4)) are
used. As before, the complementary hulling algorithmLI 1  step is completed by complementing back. This pro-
cedure is performed on all E-W vertical grids simulta-

- .neously and the resulting gray-level image replaces the
original gray-level image. Now the same procedure is

(c) (d) repeated in the SW-NE direction, then in the S N di-
.I": '4 ,a,(rijnal-et lhi ineiteratitflt i-omplementarv hulling rection, and finally in the SE-NW direction. This,

LZ.h. , i,, l 1,., iteratins. ,di Three iterauint "h: i, i- completes one iterative step of the geometric filter.
-ariant under further iteraiin,. One change has been made in the algorithm dei(cribed

above to speed the speckle reduction. It ha To di with
the application of an iterative step ifthe -hull algoi-

lan he made withot requiring too high a curvature. rithm to the umbra of a vertical slice as described abye.
Thlu. the ctirners at the tol) ithe tiwer are rounded, Instead of changing a 0 to a I if anv of thefour neigh-
hut the t( er i, n,,t redutced. It i, this reducttion if borhood configurations in Fig. 4(at is piresent, these i,,r
n,arr,, t,,wers and i)reseratiotn )f wide tiowers that configurations are used s eparatelv and consecutivel\.
-ouv+t'-t the appli(abilitv it the cionce)ts in this algo- That is. first a 0 is changed to a if the first ,Ii thlee tour

trotm ,- -pet kh' redu'tiin configurat ions is present. Then the re.uing imaize

15 May 1985 ' Vol 24. No 10 ' APPLIED OPTICS 1441
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- - -- --- - -Table II. Reductioni Rates for Square Towers

- - -- -- -Reduction of
- - -- -- -maximum/iteration,

number of vertical pixels,
- - -- -Tower size i.e.. units of intensity

1 Xi1 16
2 X2 9
3 X3 6

-~ - -- X4 5
5 X5 4

-~~ - --6 3

8 X8 2

(a)

TableEM. Raicion Rat"s for Walls

Reduction of
maimxum/iteration;

number of vertical pixels.
Wall width i.e.. units of intensitv

1 12
2 6
3 3-4 3
52
6 1.5-

(b)

valleys. A strong target return appears as a wide tall
tower. The entire body of the target appears as an even
wider high plateau. although it is not as high as the
tower representing a strong target return. The geo-
metric filter, through iterative repetition, gradually
tears down the narrow walls and fills up the narrow

* I~ivalleys. It also tears down towers and high plateaus.
lo l- which we want to preserve. However, it reduces narrow

III!liiiwalls and valleys faster than it reduces wide towers, and
the even wider plateaus are reduced even more slowly
than the wide towers. In general, the wider any land -
scape feature (valleys, holes, depressions, walls. towers.

- - plateaus) is, the more slowly it is reduced. Thus, only
(c) a few iterations are required to reduce the narrow

Fig. 10. (a) Curve. (b) Umbra of curve. (ci Complement of speckle walls and valleys and these few iterations have
umbra. very little effect on wide high towers (hence, strong

target returns are preserved) or on the even wider pla-
teaus (hence, target shape is preserved).

replaces the original image. Then the second configu- Since the algorithm works on both the umbra of the
ration is used. etc. Similarly, the four configurations image surface and its complement, it is essentially
in F~ig. 4(b) are applied separately and consecutively to symmetric with respect to up and down. Thus, filling
the complement. This results in a greater amount of up valleys is essentially equivalent to tearing down
modification of the image in each iterative step and walls. Tables II and III show the rates at which the
hence fewer iterations are required. It also causes a height (maximum) of walls and square towers is being
greater difference between the reduction rates for wide reduced. In the case of the wider towers and walls, the
and narrow features (see next subsection). reduction rate may be less for the first few iterations.

The tables show the rates established after these first
B. Why It Works few iterations. However, this lag becomes important

Speckle has a wormy appearance. Considering the for wider towers. For example, the maximum of a 14
image as a curved 2-D surface in :3-D space (as described X 14 tower is not reduced at all until the fifth itera-
above), speckle appears as narrow winding walls and tbon.

1442 APPLIED OPTICS /Vol 24, No. 10 /15 May 1985
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Geometric filter for reducing speckle

Thomas R. Crimmins

Raiar Division, Environmental Research Institute of Michigan
P.O. Box 8618, Ann Arbor, MI 48107

Abstract

A n)n-lineur speckle filter based on geometric concepts is defined and an -xampol of
its eftectiveness on synthetic aperture radar imagery is shown. A comparison witn looK-
averaging is made using artificial imagery with synthetic speckle.

Introduction

The pre:;ence of speckle in imagery produced with coherent illumination reduces e - -

teccaoility of oo3ects in the images - 8. It also reduces the effectiveness of se
computer algorttn - (e.g., edge detection) designed for automatic i-nage analvsis.

T-he jeometcic filter was designed to reduce speckle in synthetic aperture radar (SAR)
imagery wnile preserving the spatial information in the image such as edges, stri"c re-
turns, et.. it is an iterative non-linear algorithm. Usually from 4 to 0 iterationq 3r-
used. :ne algorithm was implemented on a DeAnza IP 5500 digital video processor jsino a
VAX !1 730 as a host system. Running time is about 14 seconds per iteration for 512 x ;12
pixel imnages.

Definition of the geometric filter

The .eometric filter algorithm is based on applying a single iteration of an itrativ-
convex iuling algorithm alternately to the image and to its complement (negative of the
image). For details of the geometric derivation and an intuitive explanation of tne oro-
gram oe!Dw, see Crimmins 9 .

It is esentially a one-dimensional algorithm which is applied successively in four !if-
feren ~irections in the two-dimensional image; horizontal, vertical, and the two dtaaonal
clreCtl-'3. The algorithm is defined as follows. The image is a function f(m, -H whpr-
i S m 5 M, I S n S N and the values of f are inteaers between 0 and 255. A border of
zeros s iided to the image so that f(m, n) is defined for 0 5 m + % I and 3 S n S N I.
An auxiliar. image g(m, n) is used which is initially set equal to zero on the 3imn ex-
tenciej Io.iin. The following program computes one iteration of the geometric filt-r.

I. a- L, Z-- 0, c - 3, d.-- i.
2. g m, max I f(m, n0 min [f(m-a, n-b)-l,f(m, n) + i] , for i : m5 M, 1 5 n : 5 .
3 . t n, 7 -nax g (m , n , n l n [g (m a a, n - b) , g(m , n ) + I, g m + 3 , n + b) + I I ,

4. It 1 = ; a - -a, b -b, d - 0, go to 2. If d 0; d - 1, go to 5.
5. g .,, n - nln I f (m, n) , max [f(m - a, n - o) + l, f(m, n) - 1]1,

f6tr : S m S M, I S n S N.

6. f m, n) - miln g(m,n), max [g(m - a, n - b), g(m, n) - 1, g(m + 3, n + b) - I(,
for 1 5 m S hi, I ! n 5 N.

7. If 1, i a - -a, b - -b, d -- 0, go to 5.
I: u = 0, d -- I, go to 8.

8. it c = 3; a 0, b -1, c - 2, go to 2.
If c = 2; a l, b -,c---I, go to 2.
It c = 1; a-1, b - -1, c - 0, go to 2.
It = 0; stop.

Example

Figure I is a 3AR image of an airport in Windsor, Ontario. It was made by the STAR-1
airoorne 3AR system designed and developed by the Environmental Research Institute of
micnijan kiiCM). The resolution is 6 m x 6 m and the pixel spacing is 8.4 m. Figure 2
snows tne result of applying 5 iterations of the geometric filter.

Note tnat small strong returns retain their sharp edges in the filtered imaqe. Also
medijm contrast edges retain tneir sharpness and low contrast edges are still visible in
the filtered image. Figure 3 shows 3-D plots of the boxed small strong return in the oriq-
inal and filtered images. Figure 4 shows similar 3-D plots for the boxed medium contrast
edge.
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In order to measure the "amount" ot speckle reduction, we define a specKle indox as

follows. In view of the multiplicative nature of speckle noise (Goodman"
, 

o. 25, -tn

ratio of its deviation to its mean seems to be a reasonaole measure of the amo-int F

kle noise present. For i S m S M and I S n S N, we define an approximation to t'ho lic~l

deviation oy

,i(m, n) = max f(m + a, n + b) - min f(m + a, n + b).

- a, o S -1 a, b 5 1

The local mean is defined ds

,(m, n) = f L (m + a, n + b) (2

a,b--l

The speckle index is then defined by,

4 N
speckle index H m lt, n)

MN '_ ' .4 m, n)
m=l n-1

The speckle index for the original image shown in Figure 1 is 1.05. The filtered ma-

shown in Figure 2 has a speckle index of 0.36.

Synthetic imagery

In order to create an image with synthetic speckle, we begin by choosinq a rail-'vlplje
image, r(m, n), containing some patterns of interest. A random phase image, :m, I), is
generated where, for each point (m, n), :(m, n) is an independent sample from the Iniform
distribution over the interval from 0 to 27. We then define a synthetic complex reflectiv-
ity function by

g(m, n) = r(m, n) exp [j (m, n)] (4)

where j = (-1)
1
/2. An impulse response function is defined by

(sinc - m)(sinc -n n) for jml, In! j 2,
*2 2

K(m, n) = (C)

0 otherwise.

The synthetic complex radar image is defined by h = k * g where * denotes convoljtion.
Finally, the synthetic detected image is defined by f(m, n) - h(m, n) . This d-tecto4
image is then modified by a two step process which is used at ERIM on real radar ima.,rv
to reduce 16-bit signed data to 8-bit unsigned data for display on a CRT. It cons ;ts Df
a linear scaling followed by a non-linear mapping.

The image r(m, n) used to create the synthetic image in Figure Sa has a hackground lvol
of 12. It has five rows of squares of sizes 32 x 32, 16 x 16, 8 x 8, 4 x 4 and 2 x 2 pix-
els. The pixel values of the squares, going from left to right, are 170, 130, 90 and 50.
The two large gratings consist of bright and dark stripes of dimension 64 x 6 pixels. 'T!

bright stripes have a pixel value of 170 in the first grating and 90 in the second. The
dark stripes are at the background level of 12. The stripes in the four small=r 1ratinna
have dimension 32 x 4. The bright stripes have pixel values 170, 130, 90 and 50, and tno
dark stripes are at the background level of 12.

Comparison with look-averaging

Look averaging, the noncoherent addition of multiple images, is a commonly used tech-
nique to reduce speckle noise in SAR imagery and is an obvious reference for comparinq 

t
he

effectiveness of the geometric filter. In order to make a fair comparison between the leo-
metric filter and look-averaging, the same information was used for both methods.

Look-averaging was carried out as follows. The Fourier transform of the complex imalp
( h(m, n) - see the preceeding section) was taken and its square domain was divided into

four smaller squares. Each of these four parts of the Fourier transform were then inverse-
transformed to obtain four complex looks. The detected looks were obtained by computing
the magnitude of the complex looks. Finally, the average of these four detected looks was
computed.
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The result of tnil 100K-averaging process is the image in Figure Sb. The resilt of ":i
iterations of tne geometric filter applied to the original image is in Figure 5c. T -
speckle indices toc tnese tnree images are given in Table 1.

Taole I. Speckle Indices

Image Speckle Index

Original 0.524
Look-average 0.223
Geometric filter 0.065

Figure 6 snows 3-D plos of the boxed square. Figure 7 shows 2-D plots of a lice
through tne same square and Figure 8 shows 2-D plots of a slice across part of one of *-'

Jratigs.

It appears from the above that, at least in this case, the geometric filter outnerfor-c
loOK-averaging. Thus, it could be used either to produce higher qualitv imaaery Dr ppr7ac
to priaice imagery of the same quality at a lower cost from less lata.

Summary

7he geometric filter has become a standard tool at ERIM for use in processinq SAR
1.in1aery. It tas aeen found to be useful in preparing imagery both for human inspe7-.-
an! for computer algorithms such as edge detection. It reduces specKle effect'-.;e':
-t the same time preserving the spatial information in the image such as edges, ctronl
returns, etc. This filter appears to outperform the commonly used look-averainq -.-n-4
tor reaacing specKLe.
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Figure 1. Original SAR image.

~Figure 2. Result of 5 iterations of geometric filter.
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(a)
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(c)

Figure 5. (a) 'jriiI-al image with synthetic speckle. (b) Average of
four looks. (c) Result of five iterations of geometric filter.
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Figure 6. Three-dimensional plots of boxed squ~are.

220 /SPIE Vol 556 Intenowwna Confoee.ce on Spckle (7985)

B-8



.a 4t

_.0 14. so 22.~7 Wr ~ 31 M

M-Mp

SI sol 556lnr,"toa C22 ereW c 31.SM ki '8

PINK

'p fjt

P XLVAU

. . . . .

40.. .t

____*p ~J. r ~.~ -- - , - - S - 2, - ~ ~ 5.0r



4.W

2D4

PIEL

.4I TE

?i~ure 8. Two-dimensional plots of a slice across part of a rt7:

222 /SPIE Vol 556 Intrnefionel Conference on Speckle (1985)

B-10

N ' ... % .- I -. .,



ERIM

APPENDIX C

"GEOMETRIC FILTER FOR REDUCING SPECKLE"

T. R. Crimmins

Published in Optical Engineering
Vol. 25, No. 5, 651-654 (May 1986)

p



Geometric filter for reducing speckle

Thomas R. Crimmins Abstract. A nonlinear speckle filter based on geometric concepts s ce-
Environmental Research Institute fined, and an example of its effectiveness on synthetic aperture raoar

of Michigan imagery is shown. Comparison with look-averaging is mace using art!-
Radar Division ficial imagery with synthetic speckle.
P.O. Box 8618
Ann Arbor, Michigan 48107 Sublect terms: speckle; radar synthetic aperture radar filter

Optical Engineering 25(5, 651.654 (May 1986).

CONTENTS ment of the set resulting from the pre; i(us -tep The output Is

I Introduction the function whose umbra is the complement ot the Net rexult-
2. Derinition of the geometric filter mg from this last step
3 Example The procedure described above is nov. applied in each or
4 S nthetic imaver. the other three directions This constitutes one iteration of the
5 Comparison v. th look-as eraging ueometrtc filter.
t) Summary Ftor a more detailed explanation o the _,ornetrtc Jn..

-\cknowledments tion. see Ret - b\ Crimmm A prirani that -11Ltcx) oneC
S-kppendix iteration ot the geometric nilter is rccnted .n sec s
,) Reterences Appendix) This program %ka' Implemented on i DeAn/a IP
1. INTRODUCTION 5500 diettal ideo processor uing a % A.\ II ->i( .ax h,,[

,, stem. Running time is about 14 per Iteration tor 51 2 5
The presence of speckle in imagery produced with coherent images Luall, from -4 to I) Iterations are used
illumination reduces the detectability of objects in the
Images. -- It also reduces the effectiveness of some computer 3. EXAMPLE
algorithms (e.g.. edge detection) designed for automatic im- Figure I is a SAR image of an airport in Windsor. Ontario It~~~age analysis." iue1' A mg fa arotmWdr nal)I

Tge analysis Is a four look average' made by the STAR-I airborne SAR
The geometric filter was designed to reduce speckle in system designed and developed b, the Environmental Re-

synthetic aperture radar (SAR) imagery while preserving the search Institute of Michigan (ERIM). The resolution i, 0 m •spatial information in the image such as edges. strong returns. 6 m. and the pixel spacing is 8.4 m.
etc. It is an iterative nonlinear algorithm. Figure 2 shows the result of applying five Iterations of the

geometric filter. Note that small strong returns retain the:r2. DEFINITION OF THE GEOMETRIC FILTER sharp edges in the filtered image. Also. medium-,ontrat

The geometric filter algorithm is based on applying a single edges retain their harpness. and Io%%.-contrat edgex arc t!Il
iteration of an iterative convex hulling algorithm alternately '.isible in the filtered image. Figure 3 xhowx S-D plots ot the
to the image and to its complement (negative of the image). It boxed small strong return in the original and filtered mlaaex
is essentially a one-dimensional algorithm that is applied suc- Figure 4 shows similar 3-D plots for the boxed medium-
cessively in four different directions in the two-dimensional contrast edge.
image: horizontal, vertical, and the two diagonal directions. For measuring the "amount" of speckle reduction, the

We will describe the application of the one-dimensional speckle index is defined in the following way: In vie%. of the
algorithm in the horizontal direction. The image is assumed to multiplicative nature of speckle noise i Goodman.' p 25 1. the
have integer gray-level values between 0 and 255. ratio of its deviation to its mean seems to be a reasonable

Each horizontal row of pixels defines a one-dimensional measure of the amount of speckle noise present. For I 5 m s-
function. The "discrete graph" of this function can be repre- M and I S n :- N. we define an approximation to the local
sented by a subset of a discrete grid 256 points high and as deviation by
many points wide as there are pixels in the horizontal direc-
tion of the image. The umbra of the function consists of all (Yim. ni = max fim - a. n - b)
points in this grid on or below its discrete graph. One iteration - I.5
of a convex hulling algorithm is applied to this umbra. I If
man,, iterations were performed, an approximation to the - mm tim - a. n- hi
convex hull of the umbra would be formed. ) Next. one itera-
ton of this convex hulling algorithm is applied to the comple- %%- .,here f is the function representing the ima,-e The !ocal

Insired Paper SO-108 received Oct 30. 1)85. revised manuscript received mean is defined as
Jan . 1986. accepted for publication Jan 7. 1986. received by Mianaging
Editor Feb 3. 1986 This paper is a revision of Paper 556-30 ,,hich ,, win ni fim - a. n - hi
presented ai the SPIE International Conference on Speckle. Aug 20-23, m n. m
1985. San Diego. Calif The paper presented there appears tunrefereed) in b -I
SPIE Proceedings Vol 556
. 1996 Society of Photo-Optical instrumentation Engineers The speckle index is then defined by
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Fig. 1. Original SAR image, Fig. 3. Three-imensional plots of a small strong return.

-Ia 
(T M .

1 5Tefi.re Fig.e sh.w ine-dmn a pots ofs a medum-ontas edge.
oti 36 inherest. I A nrn o h s im agl e re po s m u tin IN de e fid~ nede

m 1~thenderine asinthc co mie\ -etn for m. nulcf !5

To create an image with synthetic speckle. swe begin b% choos- kim. ni M +)(sn n)fr.r

Ing a real-valued image rim. n) containing some patterns of 1 0 otherwise
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GEOMETRIC FILTER FOR REDUCING SPECKLE

TABLE I. Speckle Indices for the Images of Fig. 5

Image Speckle ,noex

Original 0.524

Look-average 0.223

Geometric filter 0.065

Figure 7 shows 2-D plots of a slice through the same square.

(a) (bI and Fig. 8 shows 2-D plots of a slice across part of one of the
gratings.

It appears from the above that, at least in this case. the
geometric filter outperforms look-averaging. Thus, it could be
used either to produce higher quality imagery or perhaps to
produce imagery of the same quality at a losker cost from
fewer data.

6. SUMMARY

The geometric filter has become a standard tool at ERINI for
use in processing SAR imagery. It has been found to be useful

(c) in preparing imagery both for human inspection and for corn-
Fig. 5. (a) Original image with synthetic speckle. (b) Average of four puter algorithms such as edge detection. It reduces speckle
looks. (c) Result of five iterations of geometric filter. effectively while at the same time preserving the spatial infor-

mation in the image. e.g., edges and strong returns. This filter
appears to outperform the commonly used look-aseraging

The synthetic complex radar image is defined by h = k * g. method for reducing speckle.
where * denotes convolution. Finally. the synthetic detected
image is defined by f(m. n) = 1h(m. n). 7. ACKNOWLEDGMENTS

The image rim. nl used to create the synthetic image in Fig. This work was supported by the Arm Research Office.
5(a) has a background level of 12. It has five rows of squares Physics Division. under contract DAAG29-84-K-0204.
of sizes 32x32. 16x 16. 8x8. 4x4. and 2x2 pixels. The
pixel values of the squares, going from left to right, are 170. 8. APPENDIX
130. 90. and 50. The two large gratings consist of bright and
dark stripes of dimension 64 x 6 pixels. The bright stripes The image is a function fm, n) where I m a n. I An b N
have a pixel value of 170 in the first grating and 90 in the and the values of fare integers between 0 and 255 A border
second. The dark stripes are at the background level of 12. of zeros is added to the image so that fim. ni is defined for
The stripes in the four smaller gratings have dimension 32 ( 4. 0 : m s M - I and 0 : n S N -I. An auxiliary image ci m. n,
The bright stripes have pixel values 170. 130. 90, and 50. and is used that is initially set equal to zero on the same extended

the dark stripes are at the background level of 12. domain. The following program computes one iteration of the
geometric filter.

5. COMPARISON WITH LOOK-AVERAGING I. a -I. b - 0. c - 3, d - I.
Look-averaging. the noncoherent addition of multiple statis- g(m. n) - maxim, n), minlflm-a, n-bi - 1. 1 m, n)
tically independent images. is a commonly used technique to + I. for I S- m .M, I S n :s Nf
reduce speckle noise in SAR imagery and is an obvious refer- -m
ence for comparing the effectiveness of the geometric filter. 3. f(m. n) - max{g(m. ni. minigim - a. n -b). glm. n) - I.
To make a fair comparison between the geometric filter and g(m + a, n b) + Il}. for I :- m - M. I :s n -- N.
look-averaging, the same information was used for both
methods. 4. Ifd = 1;a -- a.b -- b.d-0. goto2.

Look-averaging was carried out as follows. The Fourier If d = 0; d - . go to 5.
transform of the complex image [h(m. ni-see the preceding 5
sectioni was taken, and its square domain was divided into . glm. n) ,- min{f(m, n). maxlf(m - a. n - bi - I. f m. n
four smaller squares. Each of these four parts of the Fourier - I11. for I <- m -< M. I ! n s N.
transform were then inverse-transformed to obtain four coin- 6. f(m. n) - min{g(m. n). maxig(m - a, n - b). g(m. ni -
plex looks. The detected looks were obtained by computing I, g(m + a, n + b) - Ill. for I s m!- M. I :- n - N.
the magnitude of the complex looks. Finally. the average of
these four detected looks was computed. 7. If d = I; a -- -a. b - -b, d -- 0, go to 5.

The result of this look-averaging process is the image in If d = O d - I. go to 8.
Fig. 51b). Figure 5(c) is the result of five iterations of the
geometric filter applied to the original image. The speckle 8. If c = 3; a -- 0, b - . c - 2. go to 2.
indices for these three images are given in Table I. If c = 2: a - 1. b .- . c - I. go to 2.

Figure 6 shows 3-D plots of the boxed square selected from If c = I; a ,- I. b .- - 1, c - 0. go to 2.
Figs. 5(a) through 5(c). shown top to bottom, respectively. If c = 0; stop.
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VAFig. 6. Three-dimensional plots of boxed square. Fig. 8. Two-dimensional plots of a slice across part of a grating.
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APPENDIX D

PROGRAM FOR THE GENERALIZED GEOMETRIC FILTER

The image is a function f(j, k) where 1 <_ j < J, 1 < k < K and
the values of f are non-negative integers. A border of zeroes is
added to the image so that f(j, k) is defined for 0 < j < J + I and

0 < k < K + 1. An auxiliary image g(j, k) is used that is initially

set equal to zero on the same extended domain.

The control parameter n is a positive integer and is an input
parameter. The following program computes one iteration of the gen-

eralized geometric filter.

1. a * 1, b 0 0, c * 3, d * 1.

2. g(j, k) * max~f(j, k), min[f(j - a, k - b) - n,
f(j, k) + n]I, for I < j < J, I < k <_ K.

3. f(j, k) * maxig(j, k), min[g(j - a, k - b),

g(j, k) + n, g(j + a, k + b) + nJ],

for 1 < j < J, 1 < k < K.
Wo

4. If d =; a * -a, b * -b, d * 0, go to 2.
If d = 0; d * 1, go to 5.

5. g(j, k) * minjf(j,k), max[f(j - a, k - b) + n,

f(j, k) - n]j, for 1 < j < J, 1 < k < K.

6. f(j,k) * minig(j, k), max[g(j - a, k - b),

g(j, k) - n, g(j + a, k + b) -n],

for 1< j < J, 1< k <K.

7. If d = 1; a * -a, b * -b, d * 0, go to 5.
If d = 0; d * 1, go to 8.

8. If c = 3; a * 0, b * 1, c * 2, go to 2.

If c = 2; a * 1, b * 1, c * 1, go to 2.

If c 1; a * 1, b 4 -1, c * 0, go to 2.

If c 0; stop.
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